
UpBots Smart Contract Audit

RED4SEC Page 1

Smart Contract Security Audit

UpBots

2020-11-04

UpBots Smart Contract Audit

RED4SEC Page 2

Content

1. Introduction ... 3

2. Scope .. 4

3. Conclusions .. 5

4. Recommendations .. 6

Contracts Management Risks .. 6

Wrong Visibility ... 6

Code Style ... 7

Multiple initializers exposed .. 8

Gas Optimization .. 9

Use of Require statement without reason message 11

Outdated Compiler Version ... 11

UpBots Smart Contract Audit

RED4SEC Page 3

1. Introduction

Upbots is an all-in-one platform that brings together the best crypto trading

tools and strategies that are generally stand-alone services. It provides a 360°

trading experience where users simply choose what best suits their profile.

At UpBots their mission is to create an all-in-one platform that democratizes

the financial revolution that Bitcoin started, and which decentralized finance is

now expanding upon.

With class leading tools designed to empower their success whether newbie or

advanced, whether trading crypto on centralized or decentralized exchanges, or

even investing in DeFi solutions.

As requested by UpBots and as part of the vulnerability review and management

process, Red4Sec has been asked to perform a security code audit in order to

evaluate the security of the UpBots Smart Contract source code.

All information collected here is strictly CONFIDENTIAL and may only be

distributed by UpBots with Red4Sec express authorization.

UpBots Smart Contract Audit

RED4SEC Page 4

2. Scope

UpBots Smart Contract:

• OwnedUpgradeabilityProxy.sol

o SHA256:

cacdfffdf62a8a5881e3f987b1200b2535ac2d710c30305bfcff5fa0f74fbbf4

• TimelockExtendable.sol

o SHA256:

994d7eaad48db237b89e81c722e793fad2a6b5556d69d01f430effaf7d7f0f31

• TokenRedeem.sol

o SHA256:

aac529996524761f40c132dc8e8343c864dd9b8961378e0ee070408be51c4899

• UbxToken.sol

o SHA256:

c2d58b0f2c5f5b2a71cb6eb57fc6b6812583acee332642ddb9ddb2759e164aa5

UpBots Smart Contract Audit

RED4SEC Page 5

3. Conclusions

To this date, 4th of November 2020, the general conclusion resulting from the

conducted audit, is that UpBots Smart Contracts do not present any known

vulnerabilities that could compromise the security of the users and their

information, although Red4Sec has found a few potential improvements, these

do not pose any risk by themselves.

The general conclusions of the performed audit are:

• A few low impact issues were detected and classified only as informative,

but they will continue to help UpBots improve the security and quality of

its developments.

• The analyzed smart contracts from the UpBots project comply with

good development practices; they have good organization,

comprehensive controls, a good unit test battery, upgrade functions and a

correct modularization of the project.

• While the contracts have administrative functions that allow complete

control of the project, it also includes a logic that allows you to transfer

these permissions to Time Lock, Multisign or even to give them up,

ensuring the complete decentralization of the project.

UpBots Smart Contract Audit

RED4SEC Page 6

4. Recommendations

Contracts Management Risks

The logic design of the UpBots contracts imply a few minor risks that should be

reviewed and considered for their improvement.

Possible front-running in initialize methods

The initialize method used to establish the contract’s parameters after the

deploy, may be invoked by any user. Anyone can front-run the initialize()

function right after the deploy and set themselves as owner of the new contract.

Therefore, it is convenient to limit the initialize methods to the deployer.

Possible loss of token

Even though this logic is intentional, it is necessary to mention that the UpBots

token allows to pause its functionality (transfer, burn…) and afterwards to revoke

or give up the owner’s role and the pausable role, which would leave the token

permanently and irrevocably useless.

Wrong Visibility

In order to simplify the contract for the users, it is recommended to turn the

following variables to public.

UpBots Smart Contract Audit

RED4SEC Page 7

When initializing variables as public the following methods will no longer be

necessary, and can be deleted:

References:

• https://github.com/upbots/smart-

contracts/blob/1449da13ae44ad399f7293c0bd1b941f345a9c57/contracts/TimelockExte

ndable.sol#L47-L66

Code Style

It has been possible to verify that, despite good quality code, there are a few

modifications that can help make the code more understandable and easier to

analyze.

In order to unify the pattern to make the comprehension and use of the contract

simpler for the users, we recommend that the contracts CanReclaimEther.sol and

CanReclaimToken.sol use the same logic.

As you can see below, in the CanReclaimEther.sol contract the reclaimEther()

method contains the onlyOwner modifier, besides, when using the transfer

method, it is directly done with the calling address (address(this)):

https://github.com/upbots/smart-contracts/blob/1449da13ae44ad399f7293c0bd1b941f345a9c57/contracts/TimelockExtendable.sol#L47-L66
https://github.com/upbots/smart-contracts/blob/1449da13ae44ad399f7293c0bd1b941f345a9c57/contracts/TimelockExtendable.sol#L47-L66
https://github.com/upbots/smart-contracts/blob/1449da13ae44ad399f7293c0bd1b941f345a9c57/contracts/TimelockExtendable.sol#L47-L66

UpBots Smart Contract Audit

RED4SEC Page 8

However, in CanReclaimToken.sol you can see how, as stated in the previous

example, the reclaimToken() method implements the onlyOwner modifier.

Nonetheless when the transfer is made, the owner() method is called when

address(this) could be used because the onlyOwner modifier will force only one

owner to invoke that method.

This is not a vulnerability by itself, but it helps to improve the code and reduce

the rise of new issues.

References:

• https://github.com/upbots/smart-

contracts/blob/1449da13ae44ad399f7293c0bd1b941f345a9c57/contracts/utils/reclaim/

CanReclaimEther.sol#L11

• https://github.com/upbots/smart-

contracts/blob/1449da13ae44ad399f7293c0bd1b941f345a9c57/contracts/utils/reclaim/

CanReclaimToken.sol#L14

Multiple initializers exposed

The contracts have been designed to be resilient to updates through the use of

proxies, therefore the use of initialize methods have been decided over

constructors1, this logic results in a higher GAS expense, but it is necessary under

certain circumstances.

We should always remember that the code of the initializers is a code generated

within the contract’s bytecode, alternatively the one in the constructor is a code

1 https://docs.openzeppelin.com/upgrades-plugins/1.x/writing-upgradeable

https://github.com/upbots/smart-contracts/blob/1449da13ae44ad399f7293c0bd1b941f345a9c57/contracts/utils/reclaim/CanReclaimEther.sol#L11
https://github.com/upbots/smart-contracts/blob/1449da13ae44ad399f7293c0bd1b941f345a9c57/contracts/utils/reclaim/CanReclaimEther.sol#L11
https://github.com/upbots/smart-contracts/blob/1449da13ae44ad399f7293c0bd1b941f345a9c57/contracts/utils/reclaim/CanReclaimEther.sol#L11
https://github.com/upbots/smart-contracts/blob/1449da13ae44ad399f7293c0bd1b941f345a9c57/contracts/utils/reclaim/CanReclaimToken.sol#L14
https://github.com/upbots/smart-contracts/blob/1449da13ae44ad399f7293c0bd1b941f345a9c57/contracts/utils/reclaim/CanReclaimToken.sol#L14
https://github.com/upbots/smart-contracts/blob/1449da13ae44ad399f7293c0bd1b941f345a9c57/contracts/utils/reclaim/CanReclaimToken.sol#L14

UpBots Smart Contract Audit

RED4SEC Page 9

that is not stored in it after the execution of the deploys transaction. So in the

inheritance’s case, it is convenient to make the initializers, that we don’t intend

to make public, as internal; because, as it can be observed, multiple overloads

of the same method will be generated and this may induce unwanted errors, if

called in a different order than expected.

In order to avoid exposure to unwanted methods, it is recommended to declare

the Ownable, Pausable and ERC20 initializers as internal.

Gas Optimization

Software optimization is the process of modifying a software system to make an

aspect of it work more efficiently or use less resources. This premise must be

applied to smart contracts as well, so that they execute faster or in order to save

GAS.

On Ethereum blockchain, GAS is an execution fee which is used to compensate

miners for the computational resources required to power smart contracts. If the

network usage is increasing, so will the value of GAS optimization.

These are some of the requirements that must be met to reduce GAS

consumption:

• Short-circuiting.

• Remove redundant or dead code.

• Delete unnecessary libraries.

• Explicit function visibility.

• Use of proper data types.

• Use hard coded CONSTANT instead of state variables.

• Avoid expensive operations in a loop.

• Pay special attention to mathematical operations and comparisons.

UpBots Smart Contract Audit

RED4SEC Page 10

Duplicate Logic

The logic of the onlyOwner modifier in the _release method of the

TimelockExtenable contract is executed twice, the first one during the public

call to the release method or releaseAndExtend and the second one, during

the execution of the internal method itself _release.

It is advisable to check the visibility of this function because changing from

internal to private could remove the onlyOwner modifier of the _release with

the corresponding gas savings.

Likewise, the require that validates _releaseTime in the releaseAndExtend

method, is also executed twice, since the aforementioned method already does

that check on line 91, as shown below.

UpBots Smart Contract Audit

RED4SEC Page 11

Use of Require statement without reason message

It was verified that the reason message is not specified in some require

instruction, in order to give the user more information, which consequently

makes it more user friendly.

An example of this vulnerability can be found in:

OwnedUpgradeabilityProxy.sol:32

This functionality is compatible since version 0.4.22 and the contract’s pragma

indicates 0.7.0, this will result in compatibility with this feature.

Outdated Compiler Version

Solc frequently launches new versions of the compiler. Using an outdated version

of the compiler can be problematic, especially if there are errors that have been

made public or known vulnerabilities that affect such version. The audited

contracts and its compilation script use 0.7.0 solidity version:

Solidity 0.7.x branch has important bug fixes in the array processing, so it is

recommended to use the most up to date version of the pragma.

References:

• https://github.com/ethereum/solidity/blob/develop/Changelog.md#074-2020-

10-19

https://github.com/ethereum/solidity/blob/develop/Changelog.md#074-2020-10-19
https://github.com/ethereum/solidity/blob/develop/Changelog.md#074-2020-10-19

UpBots Smart Contract Audit

RED4SEC Page 12

Invest in Security, invest in your future

