
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Prepared by: 

Renat Gubaev, CTO 

Report on Audit of UpBots ERC20 smart contract

  Smart contract version:
https://github.com/upbots/smart-contracts/releases/tag/v1.0

  Contract address:
0x8564653879a18C560E7C0Ea0E084c516C62F5653

  Proxy contract address:
0x46a8dfa8a9c478ff0840099b3a39ea98a6644eed

(as of September 25, 2020)



 

 1 

 

 

 

 

 

The ERC20 contract is developed on the basis of Open-Zeppelin 

libraries. It's considered a good practice in general since those libraries have been 

tested and audited many times by various members of the Ethereum community. 

 

Token design issues, and security vulnerabilities: 

This is a standard ERC20 token, supplemented with the option to burn 

tokens to their owners. 

1) Pauseable token. The transfer of tokens can be suspended at any 

time by one of the clients (owner, holder, admin) who has the proper rights. 

2) It's based on an upgradeable proxy smart-contract. This means that 

the business logic of the contract execution can be changed by the administrator 

at any time. It uses a mechanism similar to ZeppelinOS for updating the smart 

contract storage. 

3) It uses delegatecall-based proxy pattern with data-separation and 

it's doubtful that a fully upgradable contract remains "Decentralized". Clients and 

exchanges usually have less confidence in such contracts, but it depends on 

customer. 

 

REPORT 
   

 

While performing the audit we have addressed ERC20

smart  contract  design  issues  and  security 

vulnerabilities. Here are the results of our findings:



 

 2 

 

 

ERC20 functionality is standardized and well-studied, there are lots of 

safe libraries for the creation of such contracts. Upgradability adds more 

complexity. In our opinion, it's not necessary to use upgradeable smart contract in 

that case, unless you don't have plans to significantly change its functionality and 

logics in the future. 

 

The contract initializes with several properties: 

1) initialSupply - how many tokens need to be emited 

2) initialHolder - who is the owner of those emitted tokens 

3) owner - the owner of the smart-contract 

4) pausers - who can pause the token transfer 

 

At the time of deployment of smart contract, the person who deploys 

it must be sure these parameters are set correctly by the contract publisher. And 

it's very important for an upgradeable proxy who is actually administering it, this 

client (admin) can create a new business logic and replace the old one.  

 

If addresses of initialHolder, owner, pauser and admin are already 

known - it would be much safer to use their code directly as a constant. Otherwise, 

at the time of the deployment of the smart contract, the token's ownership and 

other rights will not transfer to the customer automatically and the publisher will 

have to do it manually. 

  



 

 3 

 

Critical vulnerabilities: 

 

==== Delegatecall to user-supplied address ==== 

Severity: High 

Contract: OwnedUpgradeabilityProxy 

Function name: initialize(address,bytes) 

The contract delegates execution to another contract with a user-supplied 

address. 

The smart contract delegates execution to a user-supplied address.This could 

allow an attacker to execute an arbitrary code in the context of this contract account and 

manipulate the state of the contract account or execute actions on its behalf. 

-------------------- 

In file: contracts/utils/upgradeability/InitializableUpgradeabilityProxy.sol:33 

 

_logic.delegatecall(_data) 

 

 

==== State access after external call ==== 

Severity: Medium 

Contract: OwnedUpgradeabilityProxy 

Function name: initialize(address,address,bytes) 

Write to persistent state following external call 

The contract account state is accessed after an external call to a user defined 

address. To prevent re-entrancy issues, consider accessing the state only before the call, 

especially if the callee is untrusted. Alternatively, a re-entrancy lock can be used to prevent 

untrusted callees from re-entering the contract in an intermediate state. 

-------------------- 

In file: contracts/utils/upgradeability/BaseAdminUpgradeabilityProxy.sol:116 

 

ms.proxyAdmin = newAdmin 




